فهرست مقالات فائزه  فروتن


  • مقاله

    1 - به کارگیری یادگیری عمیق برای بهبود نتایج تحلیل احساسات نظرات فارسی فروشگاه‌های خرده‌فروشی آنلاین
    فصلنامه فناوری اطلاعات و ارتباطات ایران , شماره 57 , سال 15 , پاییز 1402
    صنعت بازار خرده‌فروشی از جمله صنایع اثرگذار بر اقتصاد کشورها است که حیات آن وابسته به میزان رضایت و اعتماد مشتریان برای خرید از این بازارها می‌باشد. در چنین شرایطی صنعت بازار خرده‌فروشی در تلاش است تا بر اساس صفحات وب و پلتفرم‌های آنلاین شرایطی را برای ثبت نظرات و تعامل چکیده کامل
    صنعت بازار خرده‌فروشی از جمله صنایع اثرگذار بر اقتصاد کشورها است که حیات آن وابسته به میزان رضایت و اعتماد مشتریان برای خرید از این بازارها می‌باشد. در چنین شرایطی صنعت بازار خرده‌فروشی در تلاش است تا بر اساس صفحات وب و پلتفرم‌های آنلاین شرایطی را برای ثبت نظرات و تعامل مشتریان با خرده‌فروشان فراهم آورد. زیرا تحلیل نظرات منتشر شده نه تنها در تعیین میزان رضایت مشتریان بلکه در بهبود و ارتقا محصولات نقش دارند. از‌این‌رو در سال‌های اخیر تکنیک‌های تحلیل احساسات به منظور تحلیل و خلاصه‌سازی نظرات، مورد توجه پژوهشگران در حوزه‌های مختلف به‌ویژه صنعت بازار خرده‌فروشی قرار گرفته است. ازاینرو در این پژوهش با هدف بهبود در نتایج استخراج ویژگی‌ها از متن نظرات فارسی و افزایش دقت تحلیل احساسات فارسی، یک چارچوب جدید برای تحلیل احساسات در سطح جمله، بر اساس BERT، مدل استخراج ویژگی CNN-BiLSTM و مدل طبقه‌بندی XGBoost پیشنهاد شده است. در نهایت نتایج پژوهش دقت 93.74% را برای طبقه‌بندی احساسات متن نظرات فارسی؛ بر اساس چارچوب پیشنهادی نشان می‌دهد که بر اساس آن می‌توان اذعان داشت، CNN-BiLSTM از جمله روش‌های قدرتمند در استخراج ویژگی‌ها از متن فارسی است که ضمن استخراج دقیق ویژگی‌ها، باعث افزایش دقت تحلیل احساسات فارسی نیز می‌گردد. پرونده مقاله