فصلنامه فناوری اطلاعات و ارتباطات ایران
,
شماره57,سال
15
,
پاییز
1402
صنعت بازار خردهفروشی از جمله صنایع اثرگذار بر اقتصاد کشورها است که حیات آن وابسته به میزان رضایت و اعتماد مشتریان برای خرید از این بازارها میباشد. در چنین شرایطی صنعت بازار خردهفروشی در تلاش است تا بر اساس صفحات وب و پلتفرمهای آنلاین شرایطی را برای ثبت نظرات و تعامل چکیده کامل
صنعت بازار خردهفروشی از جمله صنایع اثرگذار بر اقتصاد کشورها است که حیات آن وابسته به میزان رضایت و اعتماد مشتریان برای خرید از این بازارها میباشد. در چنین شرایطی صنعت بازار خردهفروشی در تلاش است تا بر اساس صفحات وب و پلتفرمهای آنلاین شرایطی را برای ثبت نظرات و تعامل مشتریان با خردهفروشان فراهم آورد. زیرا تحلیل نظرات منتشر شده نه تنها در تعیین میزان رضایت مشتریان بلکه در بهبود و ارتقا محصولات نقش دارند. ازاینرو در سالهای اخیر تکنیکهای تحلیل احساسات به منظور تحلیل و خلاصهسازی نظرات، مورد توجه پژوهشگران در حوزههای مختلف بهویژه صنعت بازار خردهفروشی قرار گرفته است. ازاینرو در این پژوهش با هدف بهبود در نتایج استخراج ویژگیها از متن نظرات فارسی و افزایش دقت تحلیل احساسات فارسی، یک چارچوب جدید برای تحلیل احساسات در سطح جمله، بر اساس BERT، مدل استخراج ویژگی CNN-BiLSTM و مدل طبقهبندی XGBoost پیشنهاد شده است. در نهایت نتایج پژوهش دقت 93.74% را برای طبقهبندی احساسات متن نظرات فارسی؛ بر اساس چارچوب پیشنهادی نشان میدهد که بر اساس آن میتوان اذعان داشت، CNN-BiLSTM از جمله روشهای قدرتمند در استخراج ویژگیها از متن فارسی است که ضمن استخراج دقیق ویژگیها، باعث افزایش دقت تحلیل احساسات فارسی نیز میگردد.
پرونده مقاله
رایمگ
سامانه رایمگ تمامی فرآیندهای دریافت، ارزیابی و داوری، ویراستاری، صفحهآرایی و انتشار الکترونیکی نشریات علمی را به انجام میرساند